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The generalized Pareto distribution is a two-parameter distribution that contains uniform, 
exponential, and Pareto distributions as special cases. It has applications in a number of fields, 
including reliability studies and the analysis of environmental extreme events. Maximum 
likelihood estimation of the generalized Pareto distribution has previously been considered in 
the literature, but we show, using computer simulation, that, unless the sample size is 500 or 
more, estimators derived by the method of moments or the method of probability-weighted 
moments are more reliable. We also use computer simulation to assess the accuracy of confi- 
dence intervals for the parameters and quantiles of the generalized Pareto distribution. 

KEY WORDS: Maximum likelihood; Method of moments; Probability-weighted moments. 

1. THE GENERALIZED 
PARETO DISTRIBUTION 

The generalized Pareto distribution is the distri- 
bution of a random variable X defined by X = 

a(1 - e -k)/k, where Y is a random variable with the 
standard exponential distribution. The generalized 
Pareto distribution has distribution function 

F(x) = 1 - (1 - kx/)l/k, 

= 1 - exp(-x/oa), 

and density function 

f(x) = a- '(1 - kx/a)k 

= a - 1 exp( - x/c), 

the range of x is 0 x < x oo f 
0 < x < cx/k for k > 0. The parametei 
bution are a, the scale parameter, an 
parameter. The special cases k = 0 a] 
respectively, the exponential distributi( 
and the uniform distribution on [0, ca] 
butions are obtained when k < 0. The 
eralized Pareto distributions for differ 
are illustrated in Figure 1. 

The generalized Pareto distributi 
duced by Pickands (1975), and inte 
shown by Davison (1984), Smith (19 

k-sO 

1 ri 

van Montfort and Witter (1985). Its applications in- 
clude use in the analysis of extreme events, in the 
modeling of large insurance claims, as a failure-time 
distribution in reliability studies, and in any situation 
in which the exponential distribution might be used 
but in which some robustness is required against 
heavier tailed or lighter tailed alternatives. 

Some elementary but important properties of the 
generalized Pareto distribution are as follows: 

K = U, (1) 1. The failure rate r(x) =f(x)/{1 - F(x)} is given 
by r(x) = 1/(a- kx) and is monotonic in x, decreas- 
ing if k < 0, constant if k = 0, and increasing if k > 0. 

k ? 0 2. If the random variable X has a generalized 

k = 0; (2) Pareto distribution, then the conditional distribution 
of X - t given X > t is also generalized Pareto, with 

or k < 0 and the same value of k. 
rs of the distri- 3. Let Z = max(O, X, ....., XN), where the Xi are 
id k, the shape independent and identically distributed as (1) and N 
nd k = 1 yield, has a Poisson distribution. Then Z has, essentially, a 
on with mean a generalized extreme value (GEV) distribution as de- 
; Pareto distri- fined by Jenkinson (1955); that is, there exist quan- 
shapes of gen- tities ,f, y, and 6, independent of z, such that 

:ent values of k 

on was intro- 
;rest in it was 
>84, 1985), and 

Fz(z) = Pr(Z < z) 

= exp[-{ 1 - b(z - 7)/f} 1/], z>0; 

furthermore, 6 = k; that is, the shape parameters of 
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Figure 1. Probability Density Function of the Generalized Pareto Distribution for Different Values of the Shape Parameter k. 

the GEV and the generalized Pareto distributions are 
equal. 

In property 3, Z has only "essentially" a GEV distri- 
bution, because Z cannot take negative values; we 
have Pr(Z < 0) = 0 and Pr(Z = 0) = e-i, and only 
for z > 0 can the cumulative distribution function 
Fz(z) be matched by that of a GEV distribution. 
Properties 2 and 3 are relevant to the analysis of 
extreme events. The GEV distribution is widely used 
in the United Kingdom to describe the annual maxi- 
mum floods at river gauging stations, and each 
annual maximum flood may be regarded as the max- 
imum of a number of floods arising from separate 
storm events. If it is reasonable to assume that suc- 
cessive floods arrive according to a Poisson process 
and have independent magnitudes, then properties 2 
and 3 make the generalized Pareto distribution the 
logical choice for modeling those flood magnitudes 
that exceed any fixed threshold. 

2. SUMMARY 

In this article we consider the problems of esti- 
mating the parameters and quantiles of the gener- 
alized Pareto distributions. We restrict attention to 
the case - I < k < 1, for both practical and theoreti- 
cal reasons. Property 3 of Section 1 implies a close 
connection between generalized Pareto and GEV 
distributions with equal values for their shape pa- 
rameters, and, as Hosking, Wallis, and Wood (1985) 
remarked, applications of the GEV distributions, 
particularly in hydrology, usually involve the case 
- 2 < k < 1. When the generalized Pareto distri- 
bution is used as an alternative to the exponential 
distribution, it is likely that values of k near 0 will be 
of the greatest interest, because the exponential dis- 
tribution is a generalized Pareto distribution with 
k = 0. Generalized Pareto distributions with k > ? 
have finite endpoints with f(x) > 0 at each endpoint 
(see Fig. 1), and such shapes rarely occur in statistical 
applications. Generalized Pareto distributions with 

k > 1 have infinite variance, and this too is unusual 
in statistical applications. 

Maximum likelihood estimation of generalized 
Pareto parameters was discussed by Davison (1984) 
and Smith (1984, 1985). In Section 3, we derive esti- 
mators of parameters and quantiles by the method of 
moments and the method of probability-weighted 
moments (PWM's) and discuss the three methods 
and some of their large-sample properties. In Section 
4, we compare the performances of the estimators for 
samples of size 15-500, using computer simulation. 
Our main conclusions are that maximum likelihood 
estimation, although asymptotically the most efficient 
method, does not clearly display its efficiency even in 
samples as large as 500, that the method of moments 
is generally reliable except when k < -.2, and that 
PWM estimation may be recommended if it seems 
likely that k < 0, particularly if it is important that 
estimated extreme quantiles should have low bias or 
that asymptotic theory should give a good approxi- 
mation to the standard errors of the estimates. 

In Section 5, we apply our results to the hydro- 
logical problem of estimation of extreme floods, 
using as an example a series of flood peaks for the 
River Nidd at Hunsingore, England. 

3. ESTIMATION METHODS FOR THE 
GENERALIZED PARETO DISTRIBUTION 

3.1 Method of Maximum Likelihood 

The log-likelihood function for a sample x= 
{xi, ..., xn} is 

log L(x; a, k) = -n log a - (1 - k) Yi, 
i= 1 

i = -k- 1 log(1 - kxi/ca). 

The log-likelihood may be made arbitrarily large by 
taking k > 1 and oc/k arbitrarily close to max(xi), so 
the maximum likelihood estimators (MLE's) are 
taken to be the values a and k, which yield a local 
maximum of log L [an alternative approach might 
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be to maximize a grouped-data likelihood function, 
as done by Giesbrecht and Kempthorne (1976)]. To 
find the local maximum of log L requires numerical 
methods; we used a procedure based on Newton- 
Raphson iteration, with the same structure as Hosk- 
ing's (1985) algorithm for the GEV distribution. 

Smith (1984) obtained the information matrix and 
gave the asymptotic variance of the MLE's: 

-~- 22(1 - k) (1 - k)2 1 

n var 

k - 
a(1-k) (l-k)2 'k<2. (3) 

When k < j, the estimators have their familiar 
properties of consistency, asymptotic normality, and 
asymptotic efficiency. Smith (1984) also discussed the 
nonregular case k > 1, but this does not concern us 
here. 

3.2 Method of Moments 

Moments of the generalized Pareto distribution 
are obtained by noting that E(1 - kX/a)' = 
1/(1 + rk) if 1 + rk > 0. The rth moment of X exists 
if k > - 1/r. Provided that they exist, the mean, vari- 
ance, skewness, and kurtosis are, respectively, 

/ = -a/(l + k), 

a2 = a2/(1 + k)2(1 + 2k), 

y = 2(1 - kXl + 2k)1/2/(1 + 3k), 

and 

3(1 + 2k)(3 - k + 2k2) 

(1 + 3kXl + 4k) 

The moment estimators of a and k are, therefore, 

a= ?(X2/S2 + 1), k = I(X2/2- 1), 

where x and s2 are the sample mean and variance, 
respectively. Provided that k > -1, we can show by 
standard methods (e.g., Rao 1973, sec. 6h) that a and 
k are asymptotically normally distributed with 

-ac - (1 + k)2 n var 
k 

_k_ (1 + 2k)(1 + 3k)(1 + 4k) 

22(1 +6k+ 12k2) a(l +2k)(1 +4k+ 12k2) 
x(l +2k)( +4k + 12k)2 (1 +2k)2(1 +k+6k2) _ 

(4) 
When k < -?, the variance of s2 is infinite and the 
variances of a and k are not of asymptotic order n-1. 
When k = 0, (3) and (4) are identical, so the moment 
estimators are asymptotically 100% efficient. 

3.3 Method of Probability-Weighted Moments 

The PWM's of a continuous random variable X 
with distribution function F are the quantities 

Mp, s = E[XP{F(X)}r{(1 - F(X))}S] 

for real p, r, and s (Greenwood, Landwehr, Matalas, 
and Wallis 1979). Greenwood et al. (1979) exhibited 
several distributions for which the relationship be- 
tween the parameters of the distribution and the 
PWM's M, r, s is simpler than the relationship be- 
tween the parameters and the conventional moments 
Mp, o. Hosking et al. (1985) showed that efficient 
estimators of parameters and quantiles of the GEV 
distribution can be obtained using PWM's. Hosking 
(1986) gave a general exposition of the theory of 
PWM's. For the generalized Pareto distribution, it is 
convenient to work with the quantities 

s = M, o,s = E[X{1-F(X)] (s+ )(+ 1 +k) 

which exist provided that k >- 1 and in terms of 
which the parameters are given by 

k = c - 2. 
0o - 2s1 (5) 

The PWM estimators c and k are obtained by re- 
placing so and ocx in (5) by estimators based on an 
observed sample of size n. Two possibilities are 

a n- 1 (n-j)(n -j - 1).. (n-j-r+ 1) 
1 

(n - 1)(n - 2) . (n - r) j:n 

and 

n 

cr n1 (1 - pn)j:nx,, 
j=l 

where xln < < xn:n is the ordered sample and 

Pj:n = (j + 7)/(n + 3), where y and 6 are suitable con- 
stants. The estimator ar is unbiased (Landwehr, Ma- 
talas, and Wallis 1979a), but ar is merely consistent. 
The use of ?cr with y = -.35 and 6 = 0 was recom- 
mended by Landwehr et al. (1979b) for the Wakeby 
distribution, of which the generalized Pareto distri- 
bution is a special case, and by Hosking et al. (1985) 
for the GEV distribution. Whichever variant is used, 
the estimators of ar, sc, and k are asymptotically 
equivalent. The methods of Hosking et al. (1985) may 
be used to show that, provided k > -1, the {a,} are 
asymptotically normally distributed with variance 
given by 

S2 
n cov(ar, as) 

(r+ 1 + k)(s + 1 + k)(r + s + +2k) 

and that the PWM estimators a and k are asymp- 
totically normally distributed with 

n var 1 
kL4 (1 + 2k)(3 + 2k) 

r 2(7 + 18k + 11k2 + 2k3) (2 + kX2 + 6k + 7k2+ 2k3) 
x 

a(2+kX2+6k+7k2+2k3) (1 +kX2+k)2(l +k+2k2)_ 

(6) 
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Figure 2. Asymptotic Efficiency, Relative to the Maximum Likelihood Estimator, of Moment and PWM Estimators of the Shape 
Parameter of the Generalized Pareto Distribution. 

3.4 Estimation of Quantiles 

Quantiles of the generalized Pareto distribution 
are given in terms of the narameters bv 

x(F) = a{l - (1 - F)k}/k, 

= -a log(1 - F), 

A quantile estimator x(F) is defined 
estimators a and k for the paramet 
variance of x(F) is given asymptoticall' 

var x(F) {s(k)}2var a + 2as(k)s'( 

+ cx2{s'(k)}2var k, 

h(O) + {n-v(0)}/2(-t)/2 < h(O) < h(O) 

+ {n- v()} 1/2Z1 +t/2, (9) 

where zt is the tth quantile of the standard normal 
k # 0 distribution. 

k = 0. (7) If 0 is the MLE of 0, then n var 0 is given by (3), 
which is the inverse of the expected information 

by substituting matrix for 0. An alternative is to use the observed 
ers in (7). The information matrix: in this case n var 0 is estimated 
y by by 

a2 log L(x; 0) -- 

aOOT 0=0_ 
' 

where 

s(k) = { 1-(1 - F)k}/k, 

s'(k) = { -s(k) + (1 - F)klog(1 - F)}/k. 

We have x(F) = aF{l + 1(1 - k)F + O(F2)} as 
F- 0, so the accuracy of x(F) for small F is ef- 
fectively determined by the accuracy of a. 

3.5 Confidence Intervals 

Approximate confidence intervals for parameters 
and quantiles can be obtained from the asymptotic 
distribution theory of Sections 3.1-3.4. If 0 = (c k)T is 
any of the previously described estimators of 0 = 
(cx k)T and if h(O) is a continuous function of the 
parameters whose estimator h(O) is asymptotically 
normally distributed with n var h(O) - v(0) as n-- oo, 
then a confidence interval for h(0) with asymptotic 
confidence level t is 

and confidence intervals can be constructed analo- 
gously to (9). The use of observed information for 
construction of confidence intervals was proposed by 
Efron and Hinkley (1978) and was recommended for 
the GEV distribution in preference to the use of ex- 
pected information by Prescott and Walden (1983). 

3.6 Comparison of Estimators 

We can calculate the first-order asymptotic biases 
and variances of estimators of generalized Pareto pa- 
rameters and quantiles for each of the candidate 
methods of estimation, as Hosking et al. (1985) did 
for the GEV distribution. The results are of less in- 
terest for the generalized Pareto distribution, because 
it appears from our simulations that very large 
sample sizes are needed for asymptotic theory to give 
a useful approximation in finite samples for all of the 
estimation methods. Figure 2, however, in which the 
asymptotic efficiencies are plotted, relative to the 

TECHNOMETRICS, AUGUST 1987, VOL. 29, NO. 3 

(k)cov(ao, k) 

(8) 

342 

I 



www.manaraa.com

ESTIMATION FOR THE GENERALIZED PARETO DISTRIBUTION 

Table 1. Failure Rate of Maximum Likelihood Estimation for 
the Generalized Pareto Distribution 

k 

n -.4 -.2 .0 .2 .4 

15 3.6 4.8 12.2 22.7 41.7 
25 .2 .3 1.5 4.7 14.6 
50 .0 .0 .0 .0 .8 

100 .0 .0 .0 .0 .0 

NOTE: Tabulated values are the number of failures to converge of Newton- 
Raphson iteration per 100 simulated samples. 

MLE, of the moment and PWM estimators of k, 
shows a pattern the implications of which are largely 
fulfilled in our simulations: that PWM estimators 
perform well when k < 0, and particularly well when 
k % -.2, but that moment estimators have high ef- 
ficiency when k is near 0, and they outperform PWM 
estimators when k ? 0. 

4. FINITE-SAMPLE PROPERTIES 
OF THE ESTIMATORS 

A computer simulation experiment was run to 
compare different estimation methods for the gener- 
alized Pareto distribution. Simulations were per- 
formed for sample sizes n = 15, 25, 50, 100, 200, 500 
with the shape parameter taking the values k = -.4, 
-.3, ..., .4. The scale parameter a was set to 1 
throughout. All of the estimation methods considered 

are equivariant under scale changes of the data, so 
setting a = 1 involves no loss of generality. For each 
combination of values of n and k, 50,000 random 
samples were generated from the generalized Pareto 
distribution, and for each sample the parameters a 
and k and the quantiles x(F), F = .001, .01, .1, .2, .5, 
.8, .9, .98, .99, .998, .999, were estimated by each of 
the methods described in Section 3. 

As was mentioned in Section 3.1, maximum likeli- 
hood estimates sometimes cannot be obtained for the 
generalized Pareto distribution. The frequency with 
which our estimation algorithm failed to converge is 
given in Table 1. We investigated in detail 100 of the 
simulated samples for which maximum likelihood es- 
timation failed. The Newton-Raphson iteration was 
restarted from a variety of starting values of a and k, 
some based on the sample moments or PWM's, some 
chosen at random. For 91 of the 100 samples the 
iteration failed to converge for any choice of starting 
values. We conclude that the vast majority of failures 
of the algorithms are caused by the nonexistence of a 
local maximum of the likelihood function rather than 
by failure of our algorithm to find a local maximum 
when one exists. Failure of the algorithm to converge 
occurred exclusively for samples for which the other 
estimation methods gave large positive estimates of 
k, often with k > .5; therefore, to ignore such failures 
would artificially increase the bias and reduce the 
variability of maximum likelihood quantile esti- 
mators. For this reason, (k, n) combinations that gave 

Table 2. Bias of Estimators of Generalized Pareto Parameters 

k k 

n Method -.4 -.2 .0 .2 .4 -.4 -.2 .0 .2 .4 

Bias (i) Bias (k ) 
15 ML .22 .20 .16* .11* .02* .16 .15 .14* .11* .05* 

MOM .41 .23 .14 .10 .09 .30 .20 .14 .10 .09 
PWM .18 .13 .10 .08 .08 .18 .13 .10 .08 .07 

25 ML .13 .13 .13 .12 .09* .10 .11 .12 .12 .10* 
MOM .33 .16 .08 .06 .05 .23 .14 .09 .06 .05 
PWM .11 .08 .06 .05 .04 .12 .08 .06 .05 .04 

50 ML .06 .06 .06 .07 .08 .05 .05 .06 .07 .08 
MOM .25 .10 .04 .03 .02 .17 .09 .04 .03 .02 
PWM .06 .04 .03 .02 .02 .07 .04 .03 .02 .02 

100 ML .02 .03 .03 .03 .04 .02 .02 .03 .04 .04 
MOM .19 .06 .02 .01 .01 .13 .05 .02 .01 .01 
PWM .03 .02 .01 .01 .01 .04 .02 .01 .01 .01 

200 ML .01 .01 .02 .02 .02 .01 .01 .01 .02 .02 
MOM .15 .04 .01 .01 .01 .10 .03 .01 .01 .01 
PWM .02 .01 .01 .01 .01 .02 .01 .01 .01 .00 

500 ML .01 .01 .01 .01 .01 .00 .00 .01 .01 .01 
MOM .11 .02 .01 .00 .00 .07 .02 .00 .00 .00 
PWM .01 .00 .00 .00 .00 .01 .00 .00 .00 .00 

NOTE: ML is maximum likelihood, MOM is method of moments, and PWM is probability-weighted moments. 
*Values are unreliable for reasons discussed in the text. 
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Table 3. RMSE of Estimators of Generalized Pareto Parameters 

k k 

n Method -.4 -.2 .0 .2 .4 -.4 -.2 .0 .2 .4 

RMSE (a) RMSE (1 ) 
15 ML .62 .56 .49* .40* .31* .46 .41 .36* .30* 24* 

MOM .72 .49 .44 .43 .45 .38 .33 .32 .34 .40 
PWM .52 .48 .46 .45 .45 .36 .35 .35 .37 .41 

25 ML .43 .41 .38 .34 .29* .34 .32 .29 .26 .23* 
MOM .53 .35 .31 .31 .32 .29 .24 .22 .24 .28 
PWM .37 .34 .33 .33 .33 .27 .25 .25 .27 .30 

50 ML .27 .25 .23 .23 .22 .22 .20 .17 .17 .17 
MOM .37 .24 .21 .21 .21 .21 .16 .15 .15 .18 
PWM .25 .23 .23 .22 .22 .19 .17 .17 .18 .21 

100 ML .18 .17 .16 .15 .14 .15 .13 .12 .105 .102 
MOM .27 .16 .14 .14 .15 .16 .12 .100 .104 .12 
PWM .17 .16 .16 .16 .16 .14 .12 .12 .13 .14 

200 ML .12 .11 .106 .098 .092 .101 .088 .077 .068 .064 
MOM .20 .12 .101 .099 .102 .12 .086 .070 .072 .086 
PWM .12 .11 .109 .109 .109 .099 .084 .082 .089 .101 

500 ML .076 .070 .065 .060 .055 .063 .054 .046 .040 .036 
MOM .14 .077 .063 .062 .064 .091 .059 .044 .045 .054 
PWM .076 .070 .068 .068 .069 .066 .054 .051 .056 .064 

oD ML 1.67 1.55 1.41 1.26 1.10 1.40 1.20 1.00 .80 .60 
MOM - 2.73 1.41 1.38 1.42 - 2.23 1.00 1.00 1.21 
PWM 1.80 1.57 1.53 1.52 1.53 1.79 1.21 1.15 1.25 1.42 

NOTE: ML is maximum likelihood, MOM is method of moments, and PWM is probability-weighted moments. The oo row gives the 
theoretical asymptotic limits asn - x of n"l2 x RMSE. 

*Values are unreliable for reasons discussed in the text. 

more than a 10% proportion of failures of the maxi- 
mum likelihood procedure have been identified in 
our tables of results. 

In our simulations, we used PWM estimators cal- 
culated using both a, and da with y = -.35 and 6 = 0 
as estimators of a,. The biased estimators based on 
da, gave the better overall performance, so it is this 
variant whose results are given in the tables follow- 
ing. 

Our simulation results are summarized in Tables 
2-5, which give the bias and root mean squared error 
(RMSE) of estimators of the parameters a and k and 
of the upper-tail quantiles x(.9), x(.99), and x(.999). 
Biases and RMSE's of quantile estimators have been 
scaled by the true value of the quantile being esti- 
mated. Quantiles in the center of the distribution 
(.1 < F < .9) are estimated equally well by all three 
methods and, as noted in Section 3.4, lower-tail 
quantiles are essentially scalar multiples of the pa- 
rameter a. 

The biases of parameter estimators are all positive 
but are generally not severe for samples of size 100 or 
more. Overall, the smallest bias is achieved by the 
PWM estimators. Moment estimators of both pa- 

rameters have large positive biases when k < -.2, 
and this bias decays only slowly, certainly not as fast 
as n- 1, as the sample size n increases. 

The parameter estimators with the smallest RMSE 
are generally the moment estimators when k > 0 
and the PWM estimators when k < -.2. For 
-.2 < k < 0, there is little to choose between the 
moment and PWM estimators, although the PWM 
estimators might be preferred in practice because of 
their lower bias. MLE's are shown to good advan- 
tage only when n is large and k is large and positive, 
and it is barely evident that they are asymptotically 
the most efficient estimators from the simulation re- 
sults even for n = 500. 

The three estimators of the F = .9 quantile have 
very similar properties, except that the moment esti- 
mator has a relatively high RMSE in small samples 
when k < -.2. For more extreme quantiles, all esti- 
mators have a high RMSE when 1 - F < 1/n, as 
might be expected, but the moment estimators gener- 
ally have the lowest RMSE. Moment estimators of 
quantiles have large negative biases, however, when 
k < -.2, so the PWM estimators, which, when k < 
- .2 have the smallest bias, again seem preferable 
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Table 4. Bias of Estimators of Generalized Pareto Quantiles 

k =-.4 k =-.2 k =0 k =.2 k =.4 

F = .9 .99 .999 .9 .99 .999 .9 .99 .999 .9 .99 .999 .9 .99 .999 
n Method x(F)= 3.78 13.27 37.12 2.92 7.56 14.91 2.30 4.61 6.91 1.85 3.01 3.74 1.50 2.10 2.34 

15 ML .01 .39 .a .02 .11 ---a -.03b _.01 b a -.04b .05b a -.06b .O5b .02b 

MOM .01 -.26 -.44 -.03 -.17 -.25 -.04 -.09 -.09 -.03 -.04 .00 -.03 -.01 .05 
PWM -.05 -.12 -.01 -.04 -.06 .09 -.04 -.02 .12 -.03 .00 .13 -.03 .02 .14 

25 ML .00 .14 a -.02 .01 --- -.03 -.06 .04 -.03 -.07 -.06 -.03 -.06b .07 b 

MOM .01 -.22 -.39 -.02 -.13 -.19 -.02 -.06 -.06 -.03 -.03 .00 -.02 -.01 .03 
PWM -.04 -.08 .01 -.03 -.03 .08 -.02 -.01 .08 -.02 .00 .09 -.02 .02 .09 

50 ML .00 .05 .32 -.01 -.01 .10 -.01 -.04 -.02 -.01 -.05 -.06 -.01 -.05 -.06 
MOM .02 -.17 -.32 -.01 -.09 -.13 -.01 -.03 -.03 -.01 -.01 .00 -.01 .00 .02 
PWM -.02 -.05 .02 -.01 -.02 .05 -.01 .00 .05 -.01 .00 .05 -.01 .01 .04 

100 ML .00 .02 .13 -.01 .00 .04 -.01 -.02 -.02 -.01 -.03 -.04 -.01 -.03 -.04 
MOM .02 -.14 -.27 -.01 -.06 -.09 -.01 -.02 -.02 -.01 -.01 .00 .00 .00 .01 
PWM -.01 -.02 .02 -.01 -.01 .03 -.01 .00 .03 -.01 .00 .02 .00 .01 .02 

200 ML .00 .01 .06 .00 .00 .02 .00 .01 -.01 .00 -.01 -.02 .00 -.02 -.02 
MOM .02 -.11 -.22 .00 -.04 -.05 .00 .01 -.01 .00 .00 .00 .00 .00 .01 
PWM -.01 -.01 .01 .00 .00 .02 .00 .00 .01 .00 .00 .01 .00 .00 .01 

500 ML .00 .01 .03 .00 .00 .01 .00 .00 .00 .00 -.01 -.01 .00 -.01 -.01 
MOM .02 -.08 -.17 .00 -.02 -.03 .00 .00 .00 .00 .00 .00 .00 .00 .00 
PWM .00 -.01 .01 .00 .00 .01 .00 .00 .01 .00 .00 .01 .00 .00 .01 

NOTE: ML is maximum likelihood, MOM is method of moments, and PWM is probability-weighted moments. Tabulated biases are for the ratio R(F)/x(F) rather than for the 
estimator X (F) itself. 

aValues were too large to be estimated reliably. 
b Values are unreliable for reasons discussed in the text. 

under these circumstances. Maximum likelihood 
quantile estimators are very unreliable in small sam- 
ples, particularly when k < 0. 

Standard deviations obtained by simulation of pa- 
rameter and quantile estimators can be compared 
with the values obtained from the asymptotic ap- 
proximations of Section 3, Equations (3), (4), (6), and 
(8), which are also given in Tables 3 and 5. For 
sample sizes smaller than 200, the moment esti- 
mators, both of parameters and of quantiles, tend to 
perform much better, and the MLE's much worse, 
than asymptotic theory suggests. The theoretical and 
simulated standard deviations are closest for the 
PWM estimators, being no more than 10% different 
provided that n > 50 and k > -.4. 

We also included in our simulations the empirical 
coverage probabilities of confidence intervals with 
nominal coverage probabilities .8, .9, .95, .98, and .99, 
for parameters and quantiles, as described in Section 
3.5. In assessing the results, we shall consider the 
accuracy of a method of constructing confidence in- 
tervals to be the degree of closeness between the 
nominal and empirical coverage probabilities. In this 
sense, confidence intervals based on the MLE's were 
almost uniformly more accurate when using observed 
information than when using expected information, 
the exceptional cases being some confidence intervals 
for extreme upper quantiles for which both methods 

performed poorly. Apart from this, it is difficult to 
draw general conclusions from the simulation results, 
for the results depend on the numerical values of the 
shape parameter k, the sample size n, and the nom- 
inal coverage probability of the confidence interval, 
and on whether the confidence interval is for k, a, a 
quantile near the center of the distribution, or a 
quantile in the upper tail of the distribution. Results 
for confidence intervals for a and for quantiles in the 
lower tail of the distribution are, however, very simi- 
lar, because of the equivalence x(F) ~ aF as F -- 0, 
noted in Section 3.4. Table 6 contains some repre- 
sentative results and illustrates some of the following 
conclusions, drawn from the whole range of our sim- 
ulations. Confidence intervals for a and for quantiles 
x(F) with F < .8 are reasonably accurate for sample 
sizes n > 50, except for confidence intervals based on 
method-of-moment estimators when k < 0; these 
tend to be too long. Confidence intervals for k and 
for quantiles x(F) with F > .8 sometimes require very 
large sample sizes, 200 or more, before acceptable 
accuracy is obtained. This is particularly true of con- 
fidence intervals with nominal coverage probabilities 
greater than .95. Inaccuracy in confidence intervals 
for upper-tail quantiles generally takes the form that 
the intervals are too short. Although none of the 
methods of constructing confidence intervals for 
quantiles is uniformly accurate, the use of PWM- 
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Table 5. RMSE of Estimators of Generalized Pareto Quantiles 

k = -.4 k =-.2 k =0 k =.2 k =.4 

F = .9 .99 .999 .9 .99 .999 .9 .99 .999 .9 .99 .999 .9 .99 .999 
n Method x(F)= 3.78 13.27 37.12 2.92 7.56 14.91 2.30 4.61 6.91 1.85 3.01 3.74 1.50 2.10 2.34 

15 ML .45 a a .34 _a a .26 _a -a .20b .99b a .16b .24b .98b 
MOM .54 .64 .77 .33 .46 .63 .26 .36 .53 .21 .28 .43 .17 .24 .37 
PWM .39 .70 1.45 .32 .56 1.19 .26 .43 .88 .21 .35 .70 .17 .29 .57 

25 ML .34 1.41 _a .26 .70 -a .20 .40 1.47 .16 .25 .60 .12b .15b .27b 
MOM .41 .52 .66 .26 .38 .55 .20 .29 .44 .16 .22 .34 .13 .18 .28 
PWM .30 .57 1.19 .25 .45 .93 .20 .35 .66 .16 .27 .51 .13 .23 .40 

50 ML .23 .61 1.80 .18 .40 .91 .14 .25 .47 .11 .16 .25 .088 .102 .14 
MOM .29 .40 .55 .18 .29 .44 .14 .21 .34 .11 .16 .24 .089 .13 .19 
PWM .21 .44 .92 .18 .33 .65 .14 .25 .45 .11 .20 .34 .092 .16 .26 

100 ML .16 .38 .83 .13 .26 .51 .101 .17 .29 .079 .11 .' .062 .066 .088 
MOM .20 .31 .45 .13 .22 .36 .101 .16 .25 .080 .11 .1/ 063 .091 .13 
PWM .16 .34 .69 .13 .25 .45 .101 .18 .31 .081 .14 .23 .r35 .11 .17 

200 ML .11 .26 .49 .091 .18 .33 .072 .12 .20 .056 .074 .11 .043 .043 .057 
MOM .15 .24 .38 .091 .17 .29 .072 .11 .18 .056 .080 .12 .044 .065 .094 
PWM .11 .26 .52 .090 .17 .31 .072 .13 .22 .057 .098 .16 .04C .080 .12 

500 ML .072 .16 .29 .057 .11 .20 .045 .074 .12 .035 .045 .067 .027 .025 .032 
MOM .091 .17 .29 .058 .12 .21 .045 .072 .12 .036 .051 .078 .028 .041 .059 
PWM .074 .17 .34 .057 .11 .19 .045 .080 .14 .036 .062 .099 .029 .051 .074 

oo ML 1.59 3.43 5.97 1.28 2.48 4.24 1.01 1.64 2.65 .79 .96 1.38 .61 .45 .50 
MOM - - - 1.28 3.70 7.11 1.01 1.64 2.65 .79 1.14 1.75 .62 .92 1.32 
PWM 1.79 4.34 7.65 1.29 2.49 4.26 1.02 1.81 3.00 .81 1.40 2.21 .64 1.13 1.64 

NOTE: ML is maximum likelihood, MOM is method of moments, and PWM is probability-weighted moments. The oo row gives the theoretical asymptotic limits asn-- oo of 
n 1/2 x RMSE. Tabulated RMSE's are for the ratio *(F)/x(F) rather than for the estimator * (F) itself. 

a Values were too large to be estimated reliably. 
b Values are unreliable for reasons discussed in the text. 

based estimators in (9) gives the best overall results; 
for example, provided that n > 50, k > -.3, and 
F < .99, the 80% confidence interval for x(F) based 
on PWM's has empirical coverage probability be- 
tween 75% and 85%. 

To deduce from the simulation results a rec- 
ommendation as to which estimation method to use 
in practice requires some further specification of the 
problem, particularly of the range of values of k that 
is likely to be encountered. For k near 0 and for 
k > 0, moment estimators have the best overall per- 
formance. If there is a strong possibility that k is 
substantially less than 0, and particularly if k might 
be less than -.2, then PWM estimators will prob- 
ably be preferred because of their low bias. The 
PWM method is also recommended if inferences con- 
cerning the variability of estimated parameters or 
quantiles are to be based on approximate variances 
derived from asymptotic theory. Maximum likeli- 
hood estimation, with the additional computational 
burden that it involves, appears to be justified only 
for very large samples when k > .2. 

5. EXAMPLE 

Hosking et al. (1985) fitted the GEV distribution to 
the annual maximum floods of the River Nidd at 
Hunsingore, England. Some hydrologists feel, how- 
ever, that extreme upper quantiles of the distribution 
of annual maximum floods are better estimated by 
analyzing data for all flood peaks exceeding some 
threshold. The threshold can be chosen so as to give 
a larger sample than is available from the annual 
maximum series, while excluding the smallest annual 
maxima, which may have arisen from meteorological 
conditions untypical of those that cause the largest 
floods. Accordingly we now examine the flood peak 
data for the Nidd at Hunsingore. The data, taken 
from Natural Environment Research Council 
(NERC) (1975, pp. 235-236), consist of the 154 flood 
peaks between October 1, 1934, and September 30, 
1969, which exceeded 65 m3 s-x and satisfied the 
independency criteria of NERC (1975, p. 13). In 
Figure 3 the ordered data are plotted against the 
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Table 6. Empirical Noncoverage Probabilities, Percent, of Nominal 90% Confidence 
Intervals for Parameters and Quantiles of the Generalized Pareto Distribution 

k=-.2 k=.2 
Interval 

for n ML (E) ML (0) MOM PWM ML (E) ML (0) MOM PWM 

k 15 30.3 17.8 15.5 7.8 36.0 1.4 0.0 1.0 
25 25.9 18.8 16.3 9.0 37.4 16.6 2.5 4.7 
50 18.6 15.2 15.2 8.7 29.5 16.6 5.2 7.4 

100 14.8 13.1 13.5 8.1 22.9 14.6 7.9 8.8 
200 12.3 11.5 11.3 7.4 18.1 12.7 8.9 9.7 
500 10.9 10.5 8.5 8.9 14.2 11.2 9.5 9.7 

(a 15 18.0 8.4 2.5 7.0 20.3 7.2 6.4 9.9 
25 16.4 10.3 3.5 7.4 22.4 8.2 7.7 9.8 
50 12.8 10.4 4.5 7.9 17.5 10.8 8.9 9.8 

100 11.3 10.2 5.1 8.7 14.6 10.6 9.5 9.8 
200 11.0 10.4 5.1 9.6 13.0 10.4 10.1 10.1 
500 10.3 10.1 4.9 9.7 11.6 10.4 9.9 9.9 

x(.5) 15 16.7 9.5 6.6 11.2 18.8 9.7 9.7 11.9 
25 14.9 10.2 6.0 10.7 19.7 9.0 10.0 11.2 
50 12.1 10.3 5.7 10.1 15.6 10.4 10.0 10.5 

100 10.9 10.2 5.6 9.9 13.2 10.3 10.0 10.2 
200 10.8 10.4 5.2 10.3 12.0 10.4 10.3 10.4 
500 10.3 10.1 4.7 10.0 11.1 10.2 10.0 10.0 

x(.99) 15 34.9 35.9 34.2 28.1 31.6 28.0 21.8 19.9 
25 31.5 31.9 28.9 23.1 33.4 31.5 17.8 16.4 
50 23.7 24.1 23.3 18.3 30.6 26.8 14.2 13.3 

100 17.4 18.2 18.6 14.6 23.7 20.5 11.8 11.1 
200 13.5 14.2 14.7 11.9 18.2 16.1 10.7 10.2 
500 11.3 11.4 11.0 10.0 14.2 12.7 10.0 10.0 

NOTE: Tabulated values are probabilities that the true value of the quantity of interest lies outside the interval constructed for it and 
should be close to 10% if the construction of the confidence interval is accurate. The methods are: ML(E)-maximum likelihood, 
expected information; ML(O)-maximum likelihood, observed information; MOM-method of moments; and PWM-probability 
weighted moments. 

expected order statistics of the standard exponential 
distribution. 

We shall assume that successive flood peaks have 
independent magnitudes and that the number of 
peaks per year exceeding threshold t has a Poisson 
distribution with mean i(t). The relationship between 
the quantiles z( ) of the distribution of annual maxi- 
mum floods and the quantiles x,(-) of the distri- 
bution of excesses over the threshold t is then given 
by 

z(F) = t + x[1 + {(t)- log F], 

z(F) < t, 

e- () <F< 1 

0<F<e-Z(t) 

In any given year there is probability e A(t) that no 
peak exceeds the threshold, so if F < e -A(), then z(F) 
is not uniquely defined. 

As remarked in Section 1, these assumptions, to- 
gether with the assumption of a GEV distribution for 
the annual maximum floods, suggest the use of the 
generalized Pareto distribution for modeling excesses 
over a threshold. We use the method of probability- 

weighted moments to fit generalized Pareto distri- 
butions to the Nidd data. This is because we have a 
priori reason to believe that the shape parameter k 
might be markedly negative (negative values of k are 
about twice as common as positive values when fit- 
ting GEV distributions to British annual maximum 
flood series, and, as remarked in Sec. 1, we expect the 
same to be true for peak-over-threshold series) and 
because we shall make use of asymptotic theory to 
approximate finite-sample standard errors of esti- 
mated quantiles. In Table 7 we give the estimated 
parameters of generalized Pareto distributions fitted 
to the excesses of the Nidd peak floods over four 
different thresholds and the corresponding estimates 
of the .9, .99, and .999 quantiles of the distribution of 
annual maxima. Results of fitting a GEV distribution 
to the annual maximum series itself are also included. 
Table 7 also contains significance levels of the x2 test 
of the hypothesis that the number of peaks per year 
has a Poisson distribution. The X2 statistic was calcu- 
lated from a histogram of the number of peaks per 
year. All years with [2,(t)] or more peaks, where [x] 
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Figure 3. Flood Peaks of the River Nidd at Hunsingore, 1934-1969, and the Generalized Pareto Distributions Fitted to Those Peaks 
Exceeding the Thresholds 70 m3 s-1 (solid line) and 100 m3 s~1 (dashed line). To avoid crowding of the smaller peaks, the * is 
used to indicate the average position of 10 plotted points. 

denotes the largest integer not exceeding x, were 
combined into a single histogram class. Thus the his- 
togram had [22(t)] + 1 classes and the x2 test had 
[2X(t)] df. The Nidd data are consistent with the 
Poisson hypothesis for all of the thresholds con- 
sidered. 

If all of the assumptions made in this analysis were 
valid, we would expect all of the estimates k in Table 
7 to be approximately equal. In fact k/ tends to de- 
crease as the threshold is reduced, and this suggests 
that there are more relatively small flood peaks than 
the generalized Pareto assumption implies. The fitted 
generalized Pareto distributions for thresholds 70 

and 100 are plotted on Figure 3, and it seems that 
the distribution for threshold 100 gives a better fit to 
the larger observed peaks, particularly those with 
magnitudes in the range from 100 to 200 m3 s- . On 
the whole, therefore, it seems best to use a fairly high 
threshold for the peak-over-threshold analysis; this 
also gives better agreement with the results obtained 
from analyzing the annual maximum series. The dif- 
ferences between estimated quantiles in Table 7, how- 
ever, are not large compared with their standard 
errors. For example, the values of z(.99) in Table 7 
differ by up to 22%; standard errors of z(.99) derived 
from asymptotic theory assuming that k = -.2 are 

Table 7. Results of Fitting Generalized Pareto Distributions to Excesses Over a Threshold of 
Flood Peaks of the River Nidd at Hunsingore 

Estimated quantiles of distribution 
Estimated parameters of annual maximum floods 

Threshold, No. of 
t peaks P ;(t) a k 2(.9) 2(.99) z(.999) 

AM 35 42.6 -.13 217 372 577 
100 39 .54 1.11 45.5 -.10 222 377 571 

90 57 .76 1.63 32.3 -.25 218 425 793 
80 86 .26 2.46 24.8 -.32 216 454 938 
70 138 .16 3.94 22.3 -.30 214 437 880 

NOTE: P is the significance level of the X2 test for a Poisson distribution of the number of peaks per year. The AM row contains the 
results of fitting a GEV distribution to the annual maximum series. 
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+41% for the estimate based on the annual maxi- 
mum series and between +30% and + 41% for esti- 
mates based on peaks over a threshold. 

[Received April 1986. Revised December 1986.] 
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